Генератор импульсов своими

Генератор импульсов своими

Главная » Генератор своими руками


Генератор прямоугольных импульсов на NE555

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C - в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса - t1 и промежутком между импульсами - t2. t = t1+t2.

Частота и период - понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Сбоку выключатель питания и выход сигнала.

Александр 16.07 17:00 #

Схема мягко говоря недоработанная. А ее применение ограничено просмотром картинки на осциллографе. Потому что:
1) Гуляющий вывод 5 внешними наводками будет менять частоту.
2) Выходной каскад на транзисторе, с тем как он составлен, возникает вопрос - а в чем его смысл?
3) Для получения более чистого меандра, нужно было добавить компенсирующий резстор между выходом 3 и + питания. А мелким 10-15 пФ конденсатором на землю
4) Выходной каскад лучше было включить в режиме усиления тока.
5) Также стоит добавить защитный резистор в цепь подстроечного R3. Ибо выкрутив ручку максимально влево мы услышим легкий дымок резистора.

Макетная плата для пайки (10 шт)

1999-2016 СМИ Сайт-ПАЯЛЬНИК 'cxem.net'

При использовании материалов сайта, обязательна
ссылка на сайт ПАЯЛЬНИК и первоисточник

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины. в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Амбициозная цель компании MediaTek - сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик - порог входа очень низкий.

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений. который пройдет 14 и 15 октября в Новосибирске.

Кроме этого, для каждого генератора указана формула, позволяющая вычислять значение генерируемой частоты в зависимости от номиналов элементов частотозадающей цепи (частота-в герцах, сопротивление в омах, емкость - в фарадах, индуктивность - в генри; более удобно, кстати, для RC-генераторов: частота - в килогерцах, сопротивление в килоомах, емкость - в микрофарадах; для LC-генераторов: частота в мегагерцах, емкость - в нанофарадах, индуктивность - в миллигенри). Расчетные формулы для ряда генераторов получены опытным путем.

Все представляемые в статье характеристики рассматриваемых генераторов получены в результате экспериментов с конкретными образцами микросхем. С другими экземплярами микросхем характеристики могут быть несколько отличными. Формулы для расчета частоты соответствуют напряжению питания 5 В и температуре окружающей среды 25С. Нагрузочная способность генераторов такая же, как у элементов микросхем серии К561. Верхняя граница напряжения питания генераторов также определена применяемой серией микросхем и равна 15 В, а нижняя указана в таблице. Верхний предел сопротивления резисторов я установил из практических соображений на уровне 40 МОм.

В генераторах с емкостной положительной обратной связью амплитуда импульсов на входе элемента может превысить напряжение питания. В этих случаях открываются входные защитные диоды, и через них начинает протекать ток. Для ограничения этого тока во входную цепь приходится устанавливать резистор сопротивлением 1. 150 кОм, как это указано в [1 ] и использовано в [2 ].

Все рассмотренные в этой статье генераторы имеют мягкое возбуждение. Иначе говоря, как бы медленно ни увеличивалось напряжение питания, генератор все равно заработает.

Генератор на элементах 2И-НЕ (рис.1,а) стал уже классическим и известен по большому числу публикаций. Он сохраняет работоспособность припонижении напряжения питания Uпит до 2 В, при этом, правда, значительно уменьшается частота генерации.

Скважность импульсов близка к двум при любом напряжении питания. В результате разогревания корпуса микросхемы частота несколько уменьшается (на 4 #37; при 85С).

Подобный генератор может быть выполнен и на двух логических элементах 2ИЛИ-НЕ (рис.2,а), на двух инверторах (рис. 3,а), а также на трех инверторах (рис.4,а). Подробности о работе и различиях генераторов на двух и трех инверторах можно узнать из [3 ]. Отметим, что у генератора на элементах 2ИЛИ-НЕ частота генерации практически не зависит от температуры корпуса микросхемы, а у генераторов на инверторах частота очень стабильна на участке Uпит =9. 15 В.

На рис.5,а показана схема простейшего LC-генератора с логическим элементом 2И-НЕ. LC-цепь сдвигает фазу выходного сигнала элемента на 180 град. в результате этого происходит самовозбуждение генератора. Такие генераторы хорошо работают на повышенных значениях частоты, мягко возбуждаются и отличаются высокой температурной стабильностью [3 ].

При увеличении частоты сверх 1,3 МГц амплитуда выходных импульсов начинает падать.

В генераторе могут также работать элементы 2ИЛИ-НЕ, причем в этом случае он вырабатывает не прямоугольные импульсы, а колебания, по форме близкие к синусоидальным.

Для устойчивой работы генератора волновое сопротивление LC-контура не должно быть менее 2 кОм. Частота генерации практически совпадает с резонансной частотой LC-контура. Достоинство генератора - высокая температурная стабильность частоты.

Подобные по структуре генераторы можно выполнить на одном элементе триггере Шмитта (рис. 6,а). При напряжении питания, близком к максимальному, они весьма стабильны по частоте. Кроме того, они исключительно экономичны - при напряжении питания менее 6 В потребляют ток всего в несколько десятков микроампер.

1. Бирюков С. А. Цифровые устройства на МОП-интегральных микросхемах, вып. 1132, с. 60-65; вып. 1220, с. 105-111. - М. Радио и связь, 1990; 1996 (МРБ).

2. Нечаев И. Пробник логический без источника питания. - Радио, 1990, # 10, с.83,84.

3. Бирюков С. Генераторы и формирователи импульсов на микросхемах КМОП. Радио,1995,# 7,с.36,37.

4. Киверин Н. LC-генератор на логических элементах. - Радио,1990,# 7,с.55.

Светодиодная мигалка -мультивибратор

Здравствуйте дорогие друзья и все читатели моего блога popayaem.ru. Сегодняшний пост будет о простом но интересном устройстве. Сегодня мы рассмотрим, изучим и соберем светодиодную мигалку, в основе которой лежит простой генератор прямоугольных импульсов -мультивибратор.

Все это будет дальше по тексту, а пока я хочу рассказать небольшом изменении на блоге.

Заходя на свой бложик, мне всегда хочется сделать что-нибудь эдакое, что-то такое. что сделает сайт запоминающимся. Так что представляю вашему вниманию новую секретную страницу на блоге.

Эта страница отныне носит название -Это интересно.

Вы наверное спросите: Как же ее найти? А очень просто!

Вы наверное заметили, что на блоге появился некий отслаивающийся уголок с надписью Скорей сюда.

Причем стоит только подвести курсор мыши к этой надписи. как уголок начинает еще больше отслаиваться, обнажая надпись -ссылку Это интересно.

Эта ссылка ведет на секретную страницу, где вас ждет небольшой, но приятный сюрприз -подготовленный мной подарок. Более того, в дальнейшем на этой странице будут размещаться полезные материалы, радиолюбительский софт и что-нибудь еще -пока еще не придумал. Так что, периодически заглядывайте за уголок -вдруг я что-то там припрятал.

Ладно, немножко отвлекся, теперь продолжим

Вообще схем мультивибраторов существует много, но наиболее популярная и обсуждаемая это схема нестабильного симметричного мультивибратора. Обычно ее изображают таким образом.

Вот к примеру эту мультивибраторную мигалку я спаял гдето год назад из подручных деталек и как видите -мигает. Мигает несмотря на корявый монтаж, выполненный на макетной плате.

Эта схема рабочая и неприхотливая. Нужно лишь определиться как же она работает?

Принцип работы мультивибратора

Если собрать эту схемку на макетной плате и замерить напряжение мультиметром между эмиттером и коллектором, то что мы увидим? Мы увидим, что напряжение на транзисторе то поднимается почти до напряжения источника питания, то падает до нуля. Это говорит о том, что транзисторы в этой схеме работают в ключевом режиме. Замечу. что когда один транзистор открыт, второй обязательно закрыт.

Переключение транзисторов происходит следующим образом.

Когда один транзистор открыт, допустим VT1, происходит разрядка конденсатора C1. Конденсатор С2 -напротив спокойно заряжается базовым током через R4.

Конденсатор C1 в процессе разрядки держит базу транзистора VT2 под отрицательным напряжением -запирает его. Дальнейшая разрядка доводит конденсатор C1 до нуля и далее заряжает его в другую сторону.

Теперь напряжение на базе VT2 возрастает открывая его.Теперь уже конденсатор C2, некогда заряженный, подвергается разрядке. Транзистор VT1 оказывается запертым отрицательным напряжением на базе.

И вся эта свистопляска продолжается по в режиме нон стоп, пока питание не вырубишь.

Мультивибратор в своем исполнении

Сделав однажды мультивибраторную мигалку на макетке, мне захотелось ее немножко облагородить -сделать нормальную печатную плату для мультивибратора и заодно сделать платку для светодиодной индикации. Разрабатывал я их в программе Eagle CAD, которая не намного сложнее Sprintlayout но зато имеет жесткую привязку к схеме.

Печатная плата мультивибратора слева. Схема электрическая справа.

Печатная плата. Схема электрическая.

Рисунки печатной платы с помощью лазерного принтера я распечатал на фотобумаге. Затем в полном соответствии с народной технологией ЛУТ вытравил платки. В итоге после напайки деталей получились вот такие платки.

Честно говоря. после полного монтажа и подключения питания случился небольшой баг. Набранный из светодиодов знак плюса не перемигивал. Он просто и ровно горел будто мультивибратора и нет вовсе.

Пришлось изрядно понервничать. Замена четырехконечного индикатора на два светодиода исправляло ситуацию, но стоило вернуть все на свои места -мигалка не мигала.

Оказалось, что два светодиодных плеча сомкнуты перемычкой, видимо когда залуживал платку немного переборщил с припоем. В итоге светодиодные плечики горели не по переменке а синхронно. Ну ничего, несколько движений паяльником исправили ситуацию.

Результат того, что получилось я запечатлел на видео:

По моему получилось не плохо. Кстати оставляю ссылки на схемы и платы -пользуйтесь на здоровье.

Плата и схема мультивибратора.

Плата и схема индикатора Плюс.

Вообще применение мультивибраторов разнообразно. Они годятся не только для простеньких светодиодных мигалок. Поигравшись с номиналами резисторов и конденсаторов, можно выводить на динамик сигналы звуковой частоты. Везде где может понадобиться простой генератор импульсов мультивибратор подойдет однозначно.

Вроде все что планировал я рассказал. Если чтото упустил то пишите в комментариях -добавлю что нужно, а что не нужно -исправлю. Комментариям я всегда рад!

Новые статьи я пишу спонтанно и не по расписанию и поэтому предлагаю подписаться на обновления по RSS или по E-mail. Тогда новые статьи будут приходить прямо на ваш почтовый ящик или прямиком в RSS-ридер.

На этом у меня все. Желаю всем успехов и хорошего весеннего настроения!

С уважением, Владимир Васильев.

Также дорогие друзья вы можете подписаться на обновления сайта и получать новые материалы и подарки прямо себе в почтовый ящик. Для этого достаточно заполнить форму ниже.

Источники: http://cxem.net/beginner/beginner127.php, http://www.chipinfo.ru/literature/radio/200001/p44_45.html, http://popayaem.ru/svetodiodnaya-migalka-multivibrator.html

Комментариев пока нет! Генератор прямоугольных импульсов своими руками фото. Поделитесь новостью Генератор прямоугольных импульсов своими руками с друзьями!
Генератор прямоугольных импульсов своими руками 49
Генератор прямоугольных импульсов своими руками 24
Генератор прямоугольных импульсов своими руками 55
Генератор прямоугольных импульсов своими руками 75
Генератор прямоугольных импульсов своими руками 17
Генератор прямоугольных импульсов своими руками 36
Генератор прямоугольных импульсов своими руками 71
Генератор прямоугольных импульсов своими руками 84
Генератор прямоугольных импульсов своими руками 76
Генератор прямоугольных импульсов своими руками 47
Генератор прямоугольных импульсов своими руками 30
Генератор прямоугольных импульсов своими руками 59
Генератор прямоугольных импульсов своими руками 70
Генератор прямоугольных импульсов своими руками 50
Генератор прямоугольных импульсов своими руками 59
Генератор прямоугольных импульсов своими руками 11
Генератор прямоугольных импульсов своими руками 29
Генератор прямоугольных импульсов своими руками 22
Генератор прямоугольных импульсов своими руками 75
Генератор прямоугольных импульсов своими руками 86